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COURSE INTRODUCTION 

 

Numerical and Statistical Techniques involve methods for solving mathematical and data-related 

problems. Numerical techniques include algorithms for approximating solutions to equations, 

integrals, and differential equations, such as root-finding and optimization methods. Statistical 

techniques focus on analyzing and interpreting data, using methods like descriptive statistics, 

hypothesis testing, and regression analysis to make inferences and predictions. Numerical 

methods address problems requiring precise calculations, while statistical methods provide tools 

for understanding data patterns and uncertainties. Together, they are crucial for applications in 

engineering, data science, finance, and various scientific fields, enabling effective problem-

solving and decision-making. 

The course is of four credits and is divided into 14 units. Each Unit is divided into sub topics. 

There are sections and subsections in each unit. Each unit starts with a statement of objectives 

that outlines the goals we hope you will accomplish.  

Course Outcomes: 

At the completion of the course, a student will be able to: 

1. Recall the numerical methods to obtain approximate solutions of mathematical problems. 

2. Explain the concepts of finite differences, interpolation, extrapolation, and 

approximation. 

3. Apply the methods to find the accuracy of the numerical solutions. 

4. Classify initial and boundary value problems in differential equations using numerical 

methods. 

5. Evaluate numerical differentiation when routine methods are not applicable. 

6. Develop numerical problems in diverse situations in physics,engineering etc. 
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Unit 1 

Float ̇ng Po ̇nt Ar ̇thmetic 

Learning objectives 

 Describe how floating point numbers are represented in computer systems. 

 Perform addition, subtraction, multiplication, and division using floating point values, 

and comprehend the concepts behind them. 

 Explain how rounding errors occur and their effects on numerical computations. 

 

Structure 

1.1  Representation of Float ̇ng Po ̇nt Numbers 

1.2  Floating point arithmetic 

1.3  Errors in floating point representation 

1.4  P ̇tfalls of Floating Po ̇nt Representat ̇on 

1.5  Errors  ̇n Numer ̇cal Computat ̇on 

1.6  Summary 

1.7  Keywords 

1.8  Self-Assessment questions 

1.9  Case Study 

1.10  References 

 

1.1 Representation of Floating-Point Numbers 

In numerical analysis, the representation of floating-point numbers is crucial for understanding 

the precision and accuracy of numerical computations. Floating-point arithmetic can introduce 

errors due to its finite precision, and analyzing these errors is key to developing robust numerical 

algorithms. Let's delve deeper into how floating-point numbers are represented and the 

implications for numerical analysis. 

A floating-point number is represented in the form: 
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This representation allows for the encoding of both very large and very small numbers. 

Definitions related to the floating-point form of numbers: 

1. Sign Bit 

The sign bit determines the sign of the number: 

 sign=0: The number is +ve. 

 sign=1: The number is -ve. 

2. Exponent 

The exponent field is used to store the exponent of the number in binary form. The exponent is 

biased, meaning a fixed value is added to the actual exponent to get the stored exponent value. 

 Bias: A constant added to the actual exponent to allow for a range of positive and 

negative exponents. The bias depends on the precision: 

 For single precision (32-bit), the bias is 127. 

 For double precision (64-bit), the bias is 1023. 

The stored exponent E is calculated from the actual exponent e as           

3. Fraction (Mantissa) 

The fraction (or mantissa) represents the significant digits of the number. In the normalized form, 

it is assumed to have an implicit leading 1 (not stored). 

4. Normalized Form 

In normalized form, the floating-point number is represented as:  

                                         

5. Special Values 
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 Zero: Represented with all exponent bits and fraction bits set to 0. The sign bit 

distinguishes +0 and -0. 

 NaN (Not a Number): Represented with all exponent bits set to 1 and at least one 

fraction bit set to 1. 

 Denormalized Numbers: Represented with all exponent bits set to 0, allowing for 

representation of numbers very close to zero. 

6.  Precision and Range 

 Double Precision (64-bit): 

o Bits: 1 sign bit, 11 exponent bits, 52 fraction bits. 

o Precision: Approximately 16 decimal digits. 

o Range: Approximately                . 

7.  Machine Epsilon 

Machine epsilon (ε) is the smallest positive number such that 1+ϵ≠1. It measures the relative 

precision of the floating-point representation. 

 Single Precision: ε ≈       ≈ 1.19×      

 Double Precision: ε ≈      ≈ 2.22×       

8. Rounding Errors 

Due to the finite precision, not all real numbers can be exactly represented. The difference 

between the actual number and its floating-point representation is the rounding error. Rounding 

modes include: 

9. Loss of Significance 

Loss of significance, or catastrophic cancellation, occurs when subtracting two nearly equal 

numbers, resulting in a significant loss of precision. 

10. Error Propagation 
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Error propagation refers to how errors in input data or intermediate computations affect the final 

result. Analyzing error propagation is crucial for understanding the stability of numerical 

algorithms. 

11. Condition Number 

The condition number of a problem measures its sensitivity to changes in the input. It indicates 

how errors in the input can affect the output.  

IEEE 754 Floating-Point Standard 

The IEEE 754 standard defines how floating-point numbers are represented and manipulated in 

binary format. The two most common formats are single precision (32-bit) and double precision 

(64-bit). 

Single Precision (32-bit) 

 Sign bit (1 bit): ―Determines the sign of the number (0 for positive, 1 for negative)‖. 

 Exponent (8 bits): ―Encodes the exponent with a bias of 127‖. 

 Significand (23 bits): Represents the significant digits of the number (also called the 

mantissa or fraction). The leading bit (implicit bit) is assumed to be 1 for normalized 

numbers and is not stored explicitly. 

Double Precision (64-bit) 

A double precision floating-point number is also divided into three parts: 

 Sign bit (1 bit): ―Determines the sign of the number (0 for positive, 1 for negative)‖. 

 Exponent (11 bits): ―Encodes the exponent with a bias of 1023‖. 

 Significand (52 bits): Represents the significant digits of the number. The leading bit 

(implicit bit) is assumed to be 1 for normalized numbers and is not stored explicitly. 

The floating-point representation allows for a wide range of numbers to be represented, including 

very large and very small numbers. However, due to the finite precision of the significand, there 
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are limits to the accuracy of the representation, leading to issues such as round-off error and 

representation error. 

For example, in single precision, the smallest positive normalized number is       and the 

largest is     . Numbers smaller than       can be represented as denormalized numbers, but 

with reduced precision. 

Some examples of floating-point numbers represented according to the IEEE 754 standard: 

1. Single Precision (32-bit): 

Let's represent the number 7.25 in single precision: 

 Sign bit: 0 (positive) 

 Exponent: To represent 7.25 in normalized form, we need to express it as      

           So, the exponent would be 1+bias, where the bias for single precision is 

127. Thus, the biased exponent is 1+127=128, which in binary is 10000000. 

 Significand: The significand is obtained by representing 0.725 in binary. After 

normalizing it, we get 1.11011.11011.1101. Since the IEEE 754 format only stores the 

fractional part (excluding the leading 1), the significand is 

110100000000000000000001101000000000000000000011010000000000000000000. 

Putting it all together: 

 Sign: 0 

 Exponent: 10000000 

 Significand: 11010000000000000000000 

So, the IEEE 754 representation of 7.25 in single precision is: 

010000000110100000000000000000000  

2. Double Precision (64-bit): 

Now let's represent the number -0.1 in double precision: 
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 Sign bit: 1 (negative) 

 Exponent: To represent -0.1 in normalized form, we need to express it as      

         . So, the exponent would be −1+bias. The bias for double precision is 1023. 

Thus, the biased exponent is −1+1023=1022, which in binary is 01111111110. 

 Significand: The significand is obtained by representing 0.1 in binary. After normalizing 

it, we get 1.10011001100110011001100. Since the IEEE 754 format only stores the 

fractional part (excluding the leading 1), the significand is 10011001100110011001100. 

Putting it all together: 

 Sign: 1 

 Exponent: 01111111110 

 Significand: 10011001100110011001100 

So, the IEEE 754 representation of -0.1 in double precision is: 101111111110    

10011001100110011001100 

These examples illustrate how floating-point numbers are represented according to the IEEE 754 

standard, with different precision (single and double). 

1.2 Floating point arithmetic:- 

A technique used in computers to express and handle arithmetic operations on real numbers is 

called floating point arithmetic. Using a base, an exponent, and a defined number of digits (the 

mantissa or significand), it is a method of approximating real numbers. This enables computers 

to handle a set number of bits to handle a broad range of values, from very tiny to extremely big. 

Here's a breakdown of the components: 

1. Sign bit: This represents the sign of the number, indicating whether it's positive or 

negative. 
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2. Mantissa (or significand): This is the significant part of the number, which contains the 

digits representing the number's magnitude. In a normalized floating-point representation, 

the mantissa is typically a fraction in binary form. 

3. Exponent: This determines the scale of the number. It indicates the power of the base 

(usually 2) by which the mantissa should be multiplied. 

Floating point numbers are typically represented in binary form, following the IEEE 754 

standard. In this standard, floating-point numbers are represented as: 

                            

Here are the key features of floating point arithmetic: 

1. Precision: Floating point numbers have limited precision, meaning that they can only 

represent a finite set of real numbers. This limitation can lead to rounding errors, 

especially when performing operations on numbers with vastly different magnitudes. 

2. Range: Represent a wide range of values, both very small and very large, by adjusting 

the exponent. 

3. Rounding: Due to the limited precision of floating point numbers, arithmetic operations 

may introduce rounding errors. Different rounding modes (such as rounding towards 

zero, rounding to nearest, rounding up, or rounding down) can be used to handle these 

errors. 

4. Denormalized numbers: Floating point representations often include denormalized 

numbers, which allow for representing numbers smaller than the smallest normalized 

number. These numbers sacrifice precision for a wider range of representable values. 

Example- 

1. Addition: 

Let's add two floating point numbers: 
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In floating point representation, these numbers might look like: 

                     

                    

Now, to add them, we align the exponents: 

                           

Since the exponents are the same, we can simply add the mantissas: 

                          

And adjust the exponent accordingly: 

              

So, the result of                  in floating point arithmetic would be           . 

2. Multiplication: 

Let's multiply two floating point numbers: 

                   

First, let's convert these numbers to binary and align the exponents: 

                                            

Now, multiply the mantissas: 

                                                                 

And add the exponents: 

             

So, the result of                    in floating point arithmetic would be 

                            

1.3 Errors in floating point representation:- 
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Errors in floating-point representation can arise due to several factors inherent in the 

representation of real numbers in a finite digital format. Here are some common types of errors: 

1. Round-off Error: This occurs when a real number cannot be represented exactly in the 

chosen floating-point format due to its limited precision. For example, the number 1/3 

cannot be represented precisely in a binary floating-point format, leading to a round-off 

error when it's approximated. 

2. Representation Error: Some real numbers have infinite decimal expansions or cannot 

be represented exactly in the chosen floating-point format. As a result, rounding must 

occur, leading to a representation error. For instance, in base-10 floating-point 

representation, the number 1/3 cannot be represented exactly, leading to a representation 

error. 

3. Overflow and Underflow: When a computation results in a number that exceeds the 

maximum or minimum represent able value in the floating-point format, an overflow or 

underflow error occurs, respectively. This can lead to inaccuracies or even loss of 

information in the result. 

4. Cancellation Error: Significant digits can cancel each other out in subtraction 

procedures involving two nearly identical integers, which can reduce the precision of the 

output. This is a typical problem in numerical computations and is called cancelation 

error. 

5. Propagation of Error: Errors in input data or intermediate computations can propagate 

through subsequent calculations, leading to accumulation of errors in the final result. This 

is particularly problematic in iterative algorithms where errors can amplify with each 

iteration. 

6. Comparative Error: Comparing floating-point numbers for equality can be tricky due to 

the limited precision of the representation. Two numbers that are mathematically equal 

may not compare as equal due to round-off errors. 
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7. Numerical Stability: Some algorithms are sensitive to the precision of floating-point 

numbers and may exhibit instability or numerical instability if not carefully implemented. 

This can lead to incorrect results even if the algorithm is theoretically sound. 

1.4 Pitfalls of Floating-point representation 

Due to its ability to compactly represent a wide range of values, floating point representation is 

frequently employed in computing. However, it comes with several pitfalls that can lead to 

inaccuracies and unexpected behavior in numerical computations. Here are some common 

pitfalls: 

1. Precision Loss: 

o Floating point numbers have limited precision. For example, a 32-bit float (single 

precision) typically has about 7 decimal digits of precision, and a 64-bit float 

(double precision) has about 15-17 decimal digits. This limitation means that very 

large or very small numbers, or operations that involve numbers of widely 

differing magnitudes, can lead to loss of precision. 

2. Rounding Errors: 

Since all real numbers cannot be precisely represented by floating point numbers, 

rounding errors occur. This happens during arithmetic operations, and small errors can 

accumulate over multiple operations, leading to significant inaccuracies. 

3. Representation Error: 

o Some decimal numbers cannot be exactly represented in binary floating point 

format. For example, 0.1 (decimal) cannot be precisely represented in binary 

floating point, which can lead to unexpected results in computations involving 

such numbers. 

4. Overflow and Underflow: 

o Overflow occurs when a number exceeds the maximum representable value, 

resulting in infinity. Underflow happens when a number is smaller than the 

smallest representable value, often resulting in zero or denormalized numbers. 

Both can lead to errors in calculations. 
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5. Subtraction of Nearly Equal Numbers: 

o Subtracting two nearly equal floating point numbers can result in a significant loss 

of precision, a problem known as "catastrophic cancellation." This can be 

particularly problematic in numerical algorithms that rely on differences. 

6. Comparison Issues: 

o Comparing floating point numbers for equality is problematic due to precision 

and rounding errors. It is generally advised to check if the numbers are 

approximately equal within a small tolerance, rather than using direct equality. 

7. Associativity and Commutativity: 

o Floating point arithmetic operations are not strictly associative or commutative 

due to rounding errors. This means that (a + b) + c may not equal a + (b + c) and a 

+ b may not equal b + a, which can affect the results of algorithms that assume 

these properties. 

8. Platform and Implementation Differences: 

o Different hardware and software platforms might implement floating point 

arithmetic slightly differently, leading to inconsistencies in results across different 

systems. 

9. Non-Intuitive Behavior: 

o Some operations may produce results that are not intuitive. For instance, 

multiplying a very large number by a very small number might result in zero due 

to underflow, even though mathematically the result should be non-zero. 

10. Special Values: 

    Special values like NaN (Not a Number) and infinities are examples of floating point 

representations. If not correctly handled, they can spread across computations in 

unanticipated ways. 

To mitigate these issues, numerical analysts and software developers use various techniques such 

as: 

 Using higher precision arithmetic when necessary. 

 Implementing algorithms designed to minimize rounding errors. 

 Avoiding direct comparison of floating point numbers. 
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 Using specialized libraries and tools that provide better handling of floating point 

arithmetic. 

1.5 Errors  ̇n Numer ̇cal Computat ̇on 

Errors in numerical computation are inherent because of the restrictions on how numbers can be 

represented and performing arithmetic operations on computers. Understanding these errors is 

crucial for developing robust numerical methods and ensuring accurate results. Here are the main 

types of errors encountered in numerical computations: 

1. Round-off Errors 

Because computers can only display numbers with a limited number of digits, round-off errors 

can happen. There are often minor inconsistencies when actual numbers are not precisely 

represented in a binary or decimal system.  

Example: Representing   as 3.14159instead of its infinite decimal expansion. 

2. Truncation Errors 

Truncation errors arise when an infinite process is approximated by a finite one. This often 

occurs in numerical methods that approximate a mathematical procedure, such as derivatives or 

integrals. 

 

3. Discretization Errors 

Discretization errors occur when a continuous problem is transformed into a discrete one. This is 

common in numerical solutions of differential equations, where the continuous domain is 

approximated by a finite grid. 
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Example: Solving the heat equation by discretizing time and space. 

4. Algorithmic Errors 

Algorithmic errors result from the method or algorithm used to solve a problem. Poorly chosen 

algorithms can introduce significant errors, even if round-off and truncation errors are 

minimized. 

Example: Using an unstable numerical integration method that amplifies errors. 

5. Propagation Errors 

Propagation errors occur when errors accumulate through successive computational steps. Even 

small errors can grow significantly in iterative processes or long calculations. 

Example: Using the Jacobi technique, one can solve a system of linear equations iteratively, 

with errors from one iteration influencing later iterations. 

6. Data Errors 

Errors in the input data that are utilized in calculations are known as data errors. These errors 

have the potential to spread throughout the entire process and impact the outcome.  

Example: Measurement errors in experimental data used to fit a curve. 

Mitigating Errors in Numerical Computation 

1. Using Higher Precision 

Employ higher precision arithmetic (e.g., double precision) to reduce round-off errors. However, 

this comes at the cost of increased computational resources. 

2. Improved Algorithms 

Select numerical algorithms that are stable and have lower error propagation. For example, using 

backward error analysis can help understand how errors affect the solution. 

 

3. Error Analysis 
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Perform thorough error analysis to estimate the potential errors in numerical results. This 

includes understanding the sensitivity of the problem and the stability of the method used. 

4. Adaptive Methods 

Adaptive methods dynamically adjust the computational parameters (e.g., step size in 

integration) to balance accuracy and efficiency. 

5. Verification and Validation 

Verify numerical methods by comparing results with analytical solutions or other trusted 

numerical methods. Validate the methods by applying them to real-world problems with known 

outcomes. 

1.6 Summary 

Floating point arithmetic is a fundamental concept in numerical computing, enabling the 

representation and manipulation of real numbers within the limitations of computer hardware. 

Understanding its representation, precision, associated errors, and methods to mitigate these 

errors is crucial for developing accurate and reliable numerical algorithms. By mastering floating 

point arithmetic, one can ensure more robust and efficient computations in various scientific, 

engineering, and computational applications. 

1.7 Keywords 

 Floating Point Representation 

 Sign Bit 

 Exponent 

 Significand/Mantissa 

 Single Precision 

1.8 Self-Assessment questions 

1 What is the IEEE 754 standard? 

2 What are the three main components of a floating point number? 

3 How many bits are used in single precision floating point representation? 
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4 What does the term "machine epsilon" refer to? 

5 What causes round-off errors in floating point arithmetic? 

6 What is the difference between single precision and double precision? 

7 How is a NaN value represented in floating point arithmetic? 

8 What happens when an arithmetic operation results in a value too large to represent? 

9 What is the purpose of different rounding modes in floating point arithmetic? 

10 How can subtractive cancellation affect numerical computations? 

1.9 Case Study 

The space agency's current orbit prediction algorithm is based on numerical simulations that use 

floating point arithmetic. However, recent anomalies have been observed in the predicted orbits, 

leading to concerns about the accuracy and reliability of the predictions. Engineers suspect that 

these anomalies may be caused by errors in the floating point arithmetic used in the simulation. 

1.10  References:- 

1.  "Numerical Recipes: The Art of Scientific Computing" by William H. Press, Saul A. 

 Teukolsky, William T. Vetterling, and Brian P. Flannery 

2.  "Introduction to Numerical Analysis" by Kendall E. Atkinson 
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Unit-2 

Iterative Methods 

Learning objectives 

 Describe what iterative methods are and how they differ from direct methods in solving 

mathematical problems. 

 Describe what iterative methods are and how they differ from direct methods in solving 

mathematical problems. 

 Evaluate the convergence behavior of iterative methods through computational 

experiments and analysis.  

 

Structure 

2.1  Introduction 

22.2  Bisection Method 

2.3  Regula-Fals ̇ Method 

2.4  Newton-Raphson Method 

2.5  Secant Method 

2.6  Rate of Convergence of Iterative Methods 

2.7  Summary 

2.8  Keywords 

2.9  Self-Assessment questions 

2.10  Case Study 

2.11  References 
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2.1 Introduction-  

Iterative methods are numerical techniques used to approximate solutions to mathematical 

problems by repeatedly refining an initial guess until a satisfactory solution is obtained. These 

methods are commonly used when direct methods (such as Gaussian elimination for solving 

linear systems) are impractical or inefficient, especially for large-scale problems. Iterative 

methods are widely used in various fields including numerical linear algebra, optimization, and 

solving differential equations. 

2.2 Bisect ̇on Method-  

A straightforward iterative is the Intermediate Value Theorem, which asserts that a continuous 

function f(x) has to have at least one root in the interval [a, b] if its sign changes throughout that 

interval.  

The Bisection Method operates as follows: 

Initial Interval: Commence at the interval [a, b] where the sign of the function f(x) changes. 

This indicates that the signs of f(a) and f(b) are opposite. 

1. Iteration: 

o Compute the ―midpoint c of the interval:        ‖ . 

o The midpoint: f(c). 

o Repeat the process with the new interval until the desired accuracy is reached. 

2. Termination:―Stop the iterations when the width of the interval [a,  b] becomes smaller 

than a predefined tolerance, or when the desired accuracy is achieved.‖ 

The Bisection Method guarantees convergence to a root within the specified interval, provided 

that the function is continuous and changes sign within that interval. It's relatively simple to 

implement and is guaranteed to converge, albeit slowly compared to some other methods. 

However, the Bisection Method has some limitations: 

 It may converge slowly, especially if the initial interval is not chosen appropriately or if 

the function has multiple roots. 
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 It requires the function to be continuous and change sign over the interval, which may not 

always be the case. 

 It does not provide information about the multiplicity of roots. 

Despite these limitations, the Bisection Method is a valuable tool, particularly when simplicity 

and guaranteed convergence are more important than computational efficiency. It's often used as 

a benchmark or as a starting point for more sophisticated root-finding algorithms. 
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2.3 Regula-Fals ̇ Method:- 

Another iterative root-finding method that is comparable to the Bisection Method is the Regula-

Falsi Method, sometimes referred to as the False Position Method. It is based on the Intermediate 
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Value Theorem, just like the Bisection Method, but instead of updating the interval for each 

iteration through linear interpolation, which could result in faster convergence. 

Here's how the Regula-Falsi Method works: 

1. Initial Interval: ―Start with an interval [a,b] where the function f(x) changes sign. This 

means that f(a) and f(b) have opposite signs‖. 

2. Iteration: 

o ―Compute the next approximation ccc of the root using linear interpolation: 

                        ‖. 

o Assess the function at the new point c: f(c). 

o find out the new interval based on the sign of f(c): 

 ―If f(c)has the same sign as f(a), then the root lies in the interval [c, b]‖. 

 ―If f(c) has the same sign as f(b), then the root lies in the interval [a,c]‖. 

o Repeat the process with the new interval until the desired accuracy is reached. 

3. Termination: When the target precision is reached or the breadth of the interval [a,b] 

gets less than a certain tolerance, the iterations should end. 

 

The Regula-Falsi Method combines the advantages of the Bisection Method (guaranteed 

convergence) with the potential for faster convergence due to linear interpolation. However, like 

the Bisection Method, it may converge slowly if the initial interval is not chosen appropriately or 

if the function has multiple roots. 

One issue with the Regula-Falsi Method is that it can suffer from convergence problems if the 

interval is not updated carefully, especially if the function is nearly linear near the root. In such 

cases, the method may oscillate or converge slowly. 
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Despite these limitations, the Regula-Falsi Method can be an effective and efficient tool for 

finding roots of continuous functions, particularly when a simple and robust iterative method is 

needed. 
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2.4 Newton-Raphson Method- 

The NR Method, also known as Newton's method. Its foundation is the concept of using a 

tangent line to locally approximate the function, then iteratively improving this approximation to 

determine the root. This is how it operates: 

1. Initial Guess: Start with an initial supposition   for the basis of the function f(x). 

2. Iteration: 

o At each iteration n, compute the next approximation      using the formula: 

         
     

      
where        is the derivative of f(x) evaluated at   . 

o The formula essentially computes the x-intercept of the tangent line to the graph 

of f(x) at the point   . 

3. Termination: Do again the iteration until the difference between successive 

approximations           falls below a predetermined tolerance level, or until the 

desired accuracy is reached. 
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Despite these limitations, the Newton-Raphson Method is widely used in various fields due to its 

efficiency and rapid convergence when applied appropriately. It's particularly useful for 

functions with simple analytical expressions and when an initial guess close to the root is 

available. Variants of Newton's method exist to address some of its limitations, such as the 

Secant Method, which approximates the derivative using finite differences. 
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2.5 Secant Method:- 

The secant technique is a numerical root-finding approach used to approximate the roots of a 

real-valued function f(x). It is comparable to the Newton-Raphson approach but does not include 

derivative calculations. Rather, it uses the limited differences between iterations to approximate 

the derivative. 

Given an initial guess x0 and x1, the secant method iteratively computes subsequent 

approximations xn+1 using the formula: 

        
               

             
 

The method converges to a root of f(x) under suitable conditions, such as when the function is 

continuous and the initial guesses are chosen sufficiently close to the root. 

Advantages and Disadvantages 

Advantages: 

 Does not require the calculation of derivatives. 

 Simple to implement and computationally efficient. 

 Suitable for functions where obtaining derivatives is difficult or impractical. 

Disadvantages: 

 May not converge or converge slowly if the initial guesses are poorly chosen or if the 

function has multiple roots in the vicinity of the initial guesses. 

 Can be sensitive to the choice of initial guesses. 



 
 

34 
 



 
 

35 
 

 

The  root = 0.56715 

2.6 Rate of Convergence of Iterat ̇ve Methods- 

The rate of convergence of iterative methods, such as the secant method, is a measure of how 

quickly the sequence of iterates approaches the true solution of the problem. It quantifies the 

speed at which the error decreases with each iteration. The rate of convergence is typically 

classified into three categories: linear, superlinear, and quadratic. 

Linear Convergence 

In linear convergence, the error decreases by a constant factor with each iteration. 

Mathematically, if ene_nen represents the error at the nnn-th iteration, then linear convergence is 

characterized by: 

      

    

  
   

where is a constant, 0<ρ<1. The rate of convergence is said to be linear if ρ is independent of n. 

Linear convergence is relatively slow and may require many iterations to achieve a desired level 

of accuracy. 

Superlinear Convergence 

Superlinear convergence occurs when the error decreases faster than linearly with each iteration. 

There are several variations of superlinear convergence, including geometric convergence and 
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sublinear convergence. Geometric convergence, in particular, is characterized by a constant ratio 

of consecutive errors approaching zero as the number of iterations increases. 

Quadratic Convergence 

Quadratic convergence represents the fastest possible rate of convergence for iterative methods. 

In quadratic convergence, the error decreases approximately quadratically with each iteration. 

Mathematically, it is characterized by: 

      

    

    
 
   

where γ is a positive constant. Iterative methods exhibiting quadratic convergence typically 

converge rapidly to the solution, often requiring significantly fewer iterations compared to linear 

or superlinear methods. 

2.7   Summary 

Iterative methods offer flexible and efficient solutions to a wide range of mathematical problems, 

from linear and nonlinear systems to eigenvalue computations. By understanding the principles, 

techniques, and applications of iterative methods, practitioners can tackle complex numerical 

challenges effectively and obtain accurate solutions in diverse domains. 

2.8   Keywords 

 Iterative Methods 

 Convergence 

 Tolerance 

 Update Rule 

 Jacobi Method 

  

2.9  Self-Assessment questions 

1 What are iterative methods, and how do they differ from direct methods? 

2 What is the primary goal of iterative methods? 

3 Name two common iterative techniques for solving systems of linear equations. 

4 How does the Jacobi method differ from the Gauss-Seidel method? 
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5 What is the convergence criterion used in iterative methods? 

6 How is the relaxation parameter used in successive over-relaxation (SOR)? 

7 What are some applications of iterative methods in engineering and science? 

8 What is preconditioning, and how does it improve the performance of iterative solvers? 

9 How do iterative methods handle nonlinear equations? 

10 What is the role of the initial guess in iterative algorithms? 

 

2.10   Case Study 

An imaging company is developing a new algorithm for denoising images captured in low-light 

conditions. The noisy images are the result of sensor imperfections and low light levels, making 

it challenging to extract useful information. The company aims to develop an efficient denoising 

algorithm that preserves image details while removing noise effectively. 

Problem: 

Traditional denoising techniques often involve computationally expensive operations, making 

real-time denoising impractical, especially for high-resolution images. The company seeks an 

alternative approach that balances denoising performance with computational efficiency. 

 

2.11   References 

1.  "Numerical Recipes: The Art of Scientific Computing" by William H. Press, Saul A. 

 Teukolsky, William T. Vetterling, and Brian P. Flannery 

2.  "Introduction to Numerical Analysis" by Kendall E. Atkinson 
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Unit-3 

Numerical Approach to Simultaneous Linear Equations 

 

Learning objectives 

 Explain what simultaneous linear equations are and their significance in mathematical 

modeling and problem-solving. 

 Investigate iterative methods like Jacobi and Gauss-Seidel, understanding their principles 

and iterative update rules for approximating solutions. 

 Apply numerical methods for solving simultaneous linear equations to practical problems 

in engineering, physics, economics, and other fields. 

 

Structure 

3.1  Gauss Elimination Direct Method 

3.2  Pivoting 

3.3  When pivoting fails 

3.4  Summary 

3.5  Keywords 

3.6  Self-Assessment questions 

3.7  Case Study 

3.8  References 
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3.1 Gauss Elimination Direct Method- 

One direct technique for resolving linear equation systems is the Gaussian elimination approach. 

It converts the system into a triangular equivalent system that is readily solved using back 

substitution. This is how it operates: 

Algorithm 

1. Forward Elimination: 

 Start with the original augmented matrix representing the system of equations. 

 Perform row operations to introduce zeros below the diagonal elements. 

 This process results in an upper triangular matrix. 

2. Back Substitution: 

 Once the matrix is in upper triangular form, solve for the unknowns starting 

from the last equation. 

 Substitute the known values back into the previous equations to solve for the 

remaining unknowns. 
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3.2 Pivoting 

Example-The System 

 

Correspond to the augmented matrix 
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3.2 When pivoting fails:- 

You'll see that the above described process breaks down if we come across a zero entry at the 

pivot position, but there's nothing nonzero to replace it with. 

Example- 

 

 

3.4 Summary 

The numerical approach to solving simultaneous linear equations provides powerful tools 

for tackling complex mathematical problems encountered in various fields. By leveraging 

both direct and iterative methods, practitioners can efficiently and accurately obtain 

solutions to systems of equations, facilitating analysis, modeling, and decision-making 

processes in diverse domains. Understanding the principles, algorithms, and applications 

of numerical methods is crucial for addressing real-world challenges and advancing 

scientific and engineering knowledge. 

3.5 Keywords 

 Simultaneous Linear Equations 

 Numerical Methods 
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 Gaussian Elimination 

 LU Decomposition 

 Partial Pivoting 

3.6 Self-Assessment questions 

1 What are simultaneous linear equations, and why are they important in mathematical 

modeling? 

2 What is Gaussian elimination, and how does it solve systems of linear equations? 

3 Describe LU decomposition and its role in numerical methods for solving simultaneous 

linear equations. 

4 How does partial pivoting improve the numerical stability of Gaussian elimination? 

5 Compare and contrast the Gauss-Seidel method with the Jacobi method. 

6 What is iterative refinement, and how does it enhance the accuracy of solutions obtained 

from direct methods? 

7 What are convergence criteria, and why are they important in iterative methods? 

8 How do numerical methods handle error analysis in the context of solving simultaneous 

linear equations? 

3.7 Case Study 

A chemical engineering company is tasked with optimizing the production process for a 

chemical reaction that involves multiple reactants and products. The reaction kinetics are 

governed by a system of simultaneous linear equations, representing mass balances and 

reaction rates. The company aims to maximize the production yield while minimizing 

energy consumption and waste generation. 

Problem: 

The complex nature of the chemical reaction and the interdependence of various process 

parameters make analytical solutions impractical. The engineering team needs to employ 

numerical methods to solve the system of linear equations efficiently and identify optimal 

operating conditions. 
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3.8 References 

1 Golub, G. H., & Van Loan, C. F. (2012). Matrix Computations. JHU Press. 

2 Quarteroni, A., Sacco, R., &Saleri, F. (2000). Numerical Mathematics (2nd ed.). 

Springer-Verlag. 
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Unit-4 

Iterative Methods for Linear Systems 

 

Learning objectives 

 Explain the concept of iterative methods for solving linear systems and their advantages 

over direct methods in certain scenarios. 

 Understand the notion of convergence in iterative methods and how it relates to finding 

approximate solutions to linear systems. 

 Develop proficiency in implementing iterative algorithms using programming languages 

like Python, MATLAB, or Julia. 

 

Structure 

4.1  Gauss-Seidel Iterative Method 

4.2  Gauss-Jordan Method 

4.3  Summary 

4.4  Keywords 

4.5  Self-Assessment questions 

4.6  Case Study 

4.7  References 
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4.1 Gauss-Seidel Iterative Method 

The Gauss-Seidel method is based on successively refining an initial guess to the solution until a 

desired level of accuracy is achieved. The method is often used when direct methods like 

Gaussian elimination are impractical or inefficient, such as for large sparse systems or when the 

coefficient matrix is not diagonally dominant. 

Algorithm 

1. Initial Guess: Start with an initial guess x(0) 

2. Iterative Update:For each equation iii in the system, update the iii-th component of xxx 

using the formula: 

 

3. Convergence Check: Repeat the iterative update until the solution converges to the 

desired  accuracy or until a maximum number of iterations is reached. 

 

Convergence 

The Gauss-Seidel method converges under certain conditions, such as when the 

coefficient matrix AAA is diagonally dominant or symmetric positive definite. However, 

it may not converge or converge slowly for certain types of matrices. Additionally, the 

method may not converge for non-diagonally dominant matrices 

Advantages and Disadvantages 

Advantages: 

 Simple to implement and computationally efficient, especially for large sparse systems. 

 Can be applied to systems where direct methods are not suitable. 

 Allows for parallelization, making it suitable for distributed computing. 
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Disadvantages: 

 Convergence is not guaranteed for all systems, particularly for non-diagonally dominant 

matrices. 

 May converge slowly for certain types of matrices. 

 Requires careful selection of initial guesses for convergence. 

4.2 Gauss-Jordan Method 

The Gauss-Jordan method is an extension of Gaussian elimination and is used to find the 

solutions of a system of linear equations and to compute the inverse of a square matrix. It is a 

direct method that transforms the augmented matrix of the system into reduced row-echelon 

form (RREF), making it particularly useful for solving systems with multiple solutions and for 

finding the inverse of matrices. 

Algorithm 

1. Augmented Matrix: Form the augmented matrix [A b] 

2. Gaussian Elimination: Perform row operations to transform the augmented matrix into 

row-echelon form (REF). 

3. Back Substitution: Starting from the last equation, perform back substitution to obtain 

the solutions. 

4. Reduced Row-Echelon Form (RREF) 

Finding Matrix Inverse 

1. Append the identity matrix III of the same size to the right of matrix A, forming the 

augmented matrix [A I]. 

2. Apply Gauss-Jordan elimination to the augmented matrix to transform A into the identity 

matrix. The resulting transformed matrix on the right will be the inverse of A. 

Advantages and Disadvantages 
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Advantages: 

 Provides a systematic and efficient method for solving systems of linear equations and 

finding matrix inverses. 

 Guarantees unique solutions when they exist. 

 Suitable for both small and large matrices. 

Disadvantages: 

 May encounter numerical stability issues for ill-conditioned matrices. 

 Computationally expensive for large matrices due to the requirement of performing many 

row operations. 

Ex. 

Consider the system of linear equations: 

2x + y - z &= 8 

 -3x - y + 2z &= -11  

 -2x + y + 2z &= -3 

Example :  Explain by Gauss-Jordan Method. 
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Example :  Solve by Gauss-Jordan Method. 

 

Example :  Solve by Gauss-Jordan Method. 
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4.3 Summary 

Iterative methods offer powerful tools for solving linear systems in diverse applications, 

providing efficient and scalable approaches to finding approximate solutions. By 

understanding the principles, implementation, and optimization of iterative methods, 

practitioners can tackle complex numerical problems effectively and obtain accurate 

solutions in various domains. Iterative methods continue to play a crucial role in 

scientific computing, engineering, and other fields, driving innovation and advancing 

knowledge in numerical analysis and computational mathematics. 

 

4.4 Keywords 

 

 Iterative Methods 

 Linear Systems 

 Jacobi Method 
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 Gauss-Seidel Method 

 Successive Over-Relaxation (SOR) 

 

4.5 Self-Assessment questions 

1 How is convergence assessed in iterative methods for linear systems? 

2 What is the role of the residual error in iterative methods? 

3 Explain how the successive over-relaxation (SOR) method improves convergence in iterative 

solvers. 

4 How does iterative refinement enhance the accuracy of solutions obtained from direct 

methods? 

5 What factors affect the numerical stability of iterative methods? 

6 How can preconditioning techniques improve the convergence rate of iterative solvers? 

7 Discuss the application of iterative methods in solving sparse linear systems. 

 

4.6 Case Study 

A structural engineering firm is tasked with optimizing the design of a complex bridge structure 

to ensure structural integrity and minimize material usage. The design process involves solving 

large systems of linear equations representing the structural equilibrium and compatibility 

conditions. Direct methods for solving such systems are computationally expensive due to the 

size and complexity of the model. 

 

Problem: 

The engineering firm needs an efficient approach to solve the systems of linear equations 

iteratively, allowing for rapid exploration of design alternatives and optimization of structural 

parameters. 

 

4.7 References 

 

 



 
 

53 
 

Unit-5 

Finite Differences of Polynomial 

Learning objectives 

 Explain the concept of finite differences and their role in analyzing and approximating 

functions, particularly polynomials. 

 Understand how finite differences can be used to approximate derivatives of polynomials 

and other functions. 

 Interpret the patterns and relationships in finite difference tables to understand the 

behavior of polynomial functions and their derivatives. 

 

Structure 

5.1  Finite Differences 

5.2  Difference Tables 

5.3  Polynomial Interpolation 

5.4  Summary 

5.5  Keywords 

5.6  Self-Assessment questions 

5.7  Case Study 

5.8  References 

 

5.1 Finite Differences 

Approximating derivatives of functions and solving differential equations numerically are two 

applications of finite difference methods. Finite differences are a useful tool for examining the 

patterns and characteristics of polynomials. 
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Definition 

 

Finite Differences of Polynomials 

 

The finite differences of polynomials exhibit interesting properties: 

The n-th finite difference of a polynomial of degree d is zero for all n > d. 

The d-th finite difference of a polynomial of degree d is a constant (non-zero) 

value. 

 

Example: Let’s compute finite differences for the polynomial  

 

1. Function Value  
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2. First finite difference 

 

 

 

3. Second finite difference  

 

 

4. Third finite difference 

 

 

Since ( ) is a cubic polynomial (degree 3), the third finite difference is constant and all 

higher-order finite differences are zero. 

  When examining the behavior of polynomials, finite differences are an effective tools. For a 

polynomial of degree 𝑑 the 𝑑th
 finite difference is constant, and all higher-order differences are 
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zero. This property can be used in numerical methods and to derive formulas for polynomial 

interpolation. 

5.2 Difference Tables 

A finite difference table is a structured way to organize the values of a function and its finite 

differences. It's particularly useful for interpolating polynomials and understanding the behavior 

of the function. Let's create a finite difference table for a given polynomial. 

Example Polynomial 

Consider the polynomial  

Steps to Create a Finite Difference Table 

 List the function values at equally spaced points. 

 Compute the first finite differences. 

 Compute higher-order finite differences until all values are zero or a constant. 

 

1.Funtion value  

 

2.First finite differences 



 
 

57 
 

 

3.Second finite differences 

 

 

3.Third finite differences 

 

Finite Difference Table 

Here’s the complete finite difference table: 

 

Notice that for a cubic polynomial, the third finite difference is zero, which confirms the 

polynomial's degree. This table helps in understanding the behavior of the polynomial and can be 

used for interpolation and other numerical methods. 
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5.3 Polynomial Interpolation 

 The process of estimating a polynomial that passes through a given set of data points is known 

as polynomial interpolation. Next, values between data points (interpolation) or even beyond the 

data range (extrapolation) can be approximated using this polynomial. Lagrange interpolation, 

Newton's split differences, and finite differences are some of the techniques available for 

polynomial interpolation. 

Newton's Divided Difference Interpolation 

Newton's divided difference method is particularly effective for constructing the interpolating 

polynomial in an incremental manner. The polynomial is built using divided differences, which 

are recursively calculated based on the data points. 

Divided Differences 

The divided difference for a set of points  

 

 

 

 

 

Newton's Interpolating Polynomial 
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The Newton's interpolating polynomial can be written as: 

 

 

Example 

Let's use Newton's divided difference method to interpolate the polynomial for the points (0,1), 

(1,3), and (2,7): 

1.Compute the function value at given points: 

 

2.Compute the divided differences: 
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The interpolating polynomial for the given points (0,1), (1,3), and (2,7) using Newton's divided 

difference method is 𝑃 ( ) =  2
 +   + 1. 

This method can be extended to any number of points, and it is particularly powerful because the 

polynomial can be incrementally updated as more data points are added. Newton's method is 

computationally efficient and straightforward to implement, making it a valuable tool in 

numerical analysis and data interpolation. 

5.4 Summary 

Finite differences of polynomials offer a versatile and efficient approach to analyzing and 

approximating polynomial functions, providing insights into their behavior, derivatives, and 

other properties. By constructing finite difference tables and interpreting their patterns, 

practitioners can gain valuable insights into polynomial functions and their numerical properties, 

facilitating numerical computation, interpolation, and approximation tasks across various 

domains of science and engineering. Finite differences serve as a fundamental tool in numerical 

analysis, providing a bridge between analytical and numerical techniques for solving 

mathematical problems. 

5.5 Keywords 

1. Finite Differences 

2. Polynomial Functions 

3. Polynomial Differentiation 

4. Finite Difference Tables 

5. Constant Differences 

5.6 Self-Assessment questions 

1. What are finite differences, and how are they used to analyze polynomial functions? 

2. How are finite difference tables constructed for polynomial functions? 

3. What do constant differences in a finite difference table indicate about a polynomial 

function? 

4. How do higher-order differences relate to the degree of a polynomial function? 

5. What is the significance of zero differences in a finite difference table? 
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6. How can finite differences be used for numerical differentiation of polynomial functions? 

7. Describe an application of finite differences in polynomial interpolation. 

8. How can computational techniques optimize the efficiency of computing finite 

differences? 

9. What role do finite differences play in approximating derivatives of polynomial 

functions? 

10. Explain how finite differences can be employed for data smoothing tasks. 

5.7 Case Study 

A financial consulting firm specializes in analyzing stock market data to provide insights to 

investors. One common task is to compute derivatives of financial functions, such as price curves 

or volatility surfaces, for risk management and investment decision-making. Analytical 

differentiation is often impractical due to the complexity of financial models and data noise. 

Problem: 

The consulting firm needs an efficient and accurate method to compute numerical derivatives of 

financial functions, especially in the presence of noisy data and irregularly spaced observations. 

5.8 References 

1. Cheney, W., & Kincaid, D. (2012). Numerical Mathematics and Computing (7th ed.). 

Cengage Learning. 

2. Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.). Cengage Learning. 

 

 

 

Unit-6 

Polynomial Interpolation Methods 

Learning objectives 



 
 

62 
 

 The purpose of polynomial interpolation is to approximate a function using a polynomial 

that runs over a given set of data points. 

 Comprehend the notion of interpolation error and its dependence on variables such as the 

distribution of data points and the degree of the interpolating polynomial. 

 Study orthogonal polynomials and how to apply them in polynomial interpolation, 

including Legendre, Chebyshev, and Hermite polynomials. 

 

 Structure 

6.1  Newton’s Forward and Backward Formula 

6.2  Summary 

6.3  Keywords 

6.4  Self-Assessment questions 

6.5  Case Study 

6.6  References 

 

 

6.1 Newton’s Forward and Backward Formula 

Newton's forward and backward difference formulas are numerical methods used to approximate 

derivatives of a function at a given point based on discrete data points. These formulas are useful 

when the function is only known at discrete points rather than being analytically defined. 

Newton's Forward Difference Formula 

Newton's forward difference formula is used to approximate for  first derivative of a f
n
 at a point 

x0based on equally spaced data points. Given n+1 data points xi and corresponding function 

values f(xi) for i=0,1,2,… , with a constant step size h between consecutive data points, the 

forward difference formula for the first derivative f′(x0) is: 
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This formula is derived from the definition of the derivative as the limit of the difference 

quotient as hhh approaches zero. It provides a linear approximation to the derivative based on the 

function values at x0 and x0+hx. 

Newton's Backward Difference Formula 

Similarly, Newton's backward difference formula is used to approximate the first derivative of a 

function at a point x0based on equally spaced data points. The difference is that it uses data 

points preceding the point x0 rather than following it. The backward difference formula for the 

first derivative f′(x0)is: 

 

Like the forward difference formula, this formula provides a linear approximation to the 

derivative based on the function values at x0 and x0– h. 

Comparison 

 Forward Difference Formula: Uses data points ahead of x0 to approximate the 

derivative. 

 Backward Difference Formula: Uses data points before x0 to approximate the 

derivative. 

Both formulas have similar accuracy, but the choice between them depends on the direction of 

the data points and the specific requirements of the problem. 

Applications 

Newton's forward and backward difference formulas are commonly used in numerical 

differentiation, where the analytical form of the function is not available but discrete data points 

are known. They are also used in finite difference methods for solving differential equations 

numerically and in interpolation techniques. 
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Conclusion 

Newton's forward and backward difference formulas provide simple and efficient ways to 

approximate derivatives of functions based on discrete data points. They are valuable tools in 

numerical analysis and are widely used in various fields of science and engineering for 

approximating derivatives and solving differential equations. 

 

Newton’s Backward  interpolation Formula: 

Derivation 

Newton's backward interpolation formula is derived similarly to Newton's forward interpolation 

formula but by considering data points preceding the desired interpolation point. It constructs a 

backward difference table, and the polynomial coefficients are determined based on the 

backward divided differences. 

Advantages 

Newton's backward interpolation formula has several advantages: 

 It can be more convenient to use when interpolating values closer to the end of the data 

set, where backward differences are more readily available. 

 It provides a straightforward method for interpolating polynomials using equally spaced 

data points. 

 It allows for efficient computation of interpolating polynomials and requires fewer 

arithmetic operations compared to some other interpolation methods. 

Limitations 
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One limitation of Newton's backward interpolation formula is that it assumes equally spaced data 

points. Additionally, like other interpolation methods, it may introduce errors if the function 

being interpolated is not well-represented by the chosen polynomial degree or if the interpolation 

points are too far from the data set 

 

Example 1:Find the value of y if x=160ft and x=410 ft 

 

Solution: 
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Example 2: 

Find the number of students who obtained marks between 40 and 45: 

 



 
 

67 
 

Solution: 

 

6.2 Summary 

Polynomial interpolation methods offer versatile and efficient approaches to approximating 

functions from discrete data points, with applications spanning numerical analysis, scientific 

computing, and engineering disciplines. By understanding the principles of polynomial 

interpolation, including Lagrange and Newton methods, and employing computational 

techniques for optimization and error analysis, practitioners can leverage polynomial 

interpolation to solve a wide range of data analysis and approximation tasks. Polynomial 
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interpolation serves as a cornerstone of numerical analysis, providing a flexible and robust tool 

for reconstructing functions from sparse or irregularly sampled data. 

6.3 Keywords 

 Polynomial Interpolation 

 Lagrange Interpolation 

 Newton Interpolation 

 Interpolating Polynomial 

 Interpolation Error 

6.4 Self-Assessment questions 

1. How does Lagrange interpolation differ from Newton interpolation in terms of 

representation? 

2. What is the significance of Runge's phenomenon in polynomial interpolation? 

3. How does the choice of interpolation nodes affect the accuracy of polynomial 

interpolation? 

4. Describe a situation where piecewise interpolation methods, such as spline interpolation, 

are preferable to global polynomial interpolation. 

5. What are divided differences, and how are they used in Newton interpolation? 

6. How can adaptive interpolation techniques improve the accuracy of polynomial 

interpolation? 

7. What computational techniques can be employed to optimize the efficiency of 

polynomial interpolation algorithms? 

8. Explain the concept of interpolation error and how it depends on the degree of the 

interpolating polynomial. 

9. What are some practical applications of polynomial interpolation methods in scientific 

computing and engineering? 

6.5 Case Study 

A geospatial analysis company is tasked with reconstructing elevation profiles from sparse and 

irregularly spaced geographic data points collected from satellite imagery and ground surveys. 
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The goal is to create accurate elevation models for use in urban planning, environmental 

monitoring, and infrastructure development projects. 

Problem: 

The irregular distribution of data points and the presence of noise in the elevation data pose 

challenges for traditional interpolation methods. The company seeks an efficient and accurate 

approach to reconstruct elevation profiles from the available data. 

6.6 References 

1. Davis, P. J., & Rabinowitz, P. (2012). Methods of Numerical Integration (2nd ed.). Dover 

Publications. 

2. Stoer, J., &Bulirsch, R. (2002). Introduction to Numerical Analysis. Springer Science & 

Business Media. 
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Unit-7 

Central Difference Formula 

Learning objectives 

 Explain what the central difference formula is and its purpose in numerical 

differentiation. 

 Understand the mathematical derivation and formulation of the central difference 

formula. 

 Learn about the accuracy of the central difference formula compared to forward and 

backward difference formulas. 

 

Structure 

7.1  Gauss Forward and Backward Formula 

7.2  Stirling's Formula 

7.3  Bessel’s Formula 

7.4  Everett’s Formula 

7.5  Summary 

7.6  Keywords 

7.7  Self-Assessment questions 

7.8  Case Study 

7.9  References 

 

 

 

 



 
 

71 
 

7.1 Gauss Forward and Backward Formula 
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7.2 Stirling's Formula: 

Stirling gave the most general formula for interpolating values near the centre of the table by 

taking mean of Gauss forward and Gauss backward interpolation formulae. 

Taking mean of expressions given by 



 
 

73 
 

 

7.3 Bessel's Formula: 

In numerical analysis, Bessel's formula often refers to approximations involving Bessel functions 

or their derivatives, which are commonly used in problems related to wave propagation, heat 

conduction, and other physical phenomena with cylindrical or spherical symmetry. 

One of the common applications of Bessel functions in numerical analysis is solving differential 

equations with cylindrical or spherical symmetry. For instance, consider the Bessel differential 

equation:

 

where 𝑦( ) is the Bessel function of the first kind 𝐽𝑛( ), and 𝑛 is a constant. This equation arises 

in many physical problems, such as the vibration of a circular membrane, heat conduction in a 

cylinder, and diffraction of waves. 

This series can be truncated to a finite number of terms to obtain an approximation of the Bessel 

function. The approximation becomes more accurate as more terms are included in the series. 

In numerical analysis, Bessel functions are often used in approximation techniques for solving 

differential equations numerically, especially when the solutions exhibit cylindrical or spherical 

symmetry. These functions are also important in applications involving Fourier transforms, as 

they arise naturally when dealing with problems in polar or cylindrical coordinates. 
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7.4 Everett's Formula: 

Everett's Formula is often associated with the Everett integral transform and might not have a 

single standard form. It's used in various contexts such as in signal processing and image 

processing for noise reduction and feature extraction. A general form might look like: 

 

These formulae are important in numerical analysis, signal processing, and various other fields 

for approximating derivatives, factorial computations, and function representations. 

 

7.5 Summary 

The central difference formula is a vital tool in numerical analysis, providing a robust 

method for approximating derivatives with higher accuracy than other finite difference 

methods. Its applications span various scientific and engineering disciplines, where it 

facilitates the numerical solution of complex problems involving differential equations and 

function approximation. By understanding its formulation, advantages, and limitations, 

practitioners can effectively apply the central difference formula to a wide range of 

computational tasks. 

 

7.6 Keywords 

 Central Difference 

 Numerical Differentiation 

 Finite Difference Method 

 First Derivative Approximation 

 Second Derivative Approximation 

 

7.7 Self-Assessment questions 

1. What is the central difference formula used for in numerical analysis? 
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2. What is the mathematical expression for the second derivative using the central 

difference formula? 

3. In what types of problems is the central difference formula commonly applied? 

4. Why might the central difference formula be less suitable for boundary points in a 

data set? 

5. How can numerical differentiation amplify noise in data, and what can be done to 

mitigate this effect? 

6. What are the advantages of using the central difference formula in solving partial 

differential equations? 

 

 

7.8 Case Study 

A meteorological research institute is tasked with modeling temperature distribution over a 

geographic region to predict climate changes and their impacts. The temperature data is 

collected at various points over time, and the goal is to compute the rate of temperature 

change, which involves calculating the spatial and temporal derivatives of the temperature 

function. 

 

Problem: 

The data points are collected at discrete intervals, making it necessary to use numerical 

differentiation to estimate the derivatives. Accurate estimation of these derivatives is crucial 

for understanding temperature trends and making reliable climate predictions. 

 

7.9 References 

1. Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.). Brooks/Cole, 

Cengage Learning. 

2. Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers (7th ed.). 

McGraw-Hill Education. 
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Unit-8 

Interpolation of Unequal Intervals 

 

Learning objectives 

 Explore more advanced interpolation techniques if applicable, such as piecewise 

interpolation and higher-dimensional interpolation. 

 Apply interpolation techniques to real-world data with unequal intervals. 

 

 

Structure 

8.1 Lagrange’s Interpolation 

8.2 Newton Divided Difference Formula 

8.3 Summary 

8.4 Keywords 

8.5 Self-Assessment questions 

8.6 Case Study 

8.7 References 
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8.1 Lagrange’s Interpolation:- 

Lagrange's interpolation formula is a polynomial interpolation technique used to discover the 

polynomial that passes from beginning to end a given set of points. It is particularly useful when 

the points are not necessarily equally spaced. The Lagrange polynomial is expressed as a linear 

combination of Lagrange basis polynomials, each of which is constructed to be zero at all given 

points except one. 

Let y = f(x) take the values yo, y1, Y2,..., Yn; for the argument x taking Xn, then the polynomial 

by Lagrange's interpolationvalues Xo, X1, X2, …..,xn 

.

 

 

 

Example-1: Estimate f(10) by using Lagrange’s Interpolation formula:  
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Example-2:Using Newton's split difference method, find the polynomial for the following 

qualities: 21, 15, 12, 3 for x, using −1, 1, 2, 3 separately. From there, find (1.5). 

 (ii) find ƒ(1.5) using Lagrange's interpolation formula.  

Solution: 
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8.2 Newton Divided Difference Formula 

The Newton Divided Difference Formula is a method used for polynomial interpolation, 

particularly useful when dealing with unequally spaced data points. It constructs an interpolating 

polynomial by incrementally building it using divided differences, which can be calculated 

recursively. 

Newton's Divided Difference Formula 

For  (x0,y0),(x1,y1),…,(xn,yn) the Newton's divided difference polynomial is given by 

Divided Differences 

1. First-order differences: 
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2. Second-order differences: 

 

3. General k-th order differences: 

 

Example  

Let's use Newton's divided difference method to interpolate the polynomial for the points (1,1), 

(2,4), and (3,9). 
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Thus, the interpolating polynomial for the points (1,1), (2,4), and (3,9) using Newton's divided 

difference method is 𝑃( ) =  2
. 

Newton's Divided Difference Formula is an efficient and systematic method to construct an 

interpolating polynomial. It is especially useful when dealing with unequally spaced data points, 

and the polynomial can be incrementally updated as new data points are added. The method's 

recursive nature simplifies the computation of the coefficients of the interpolating polynomial, 

making it a powerful tool in numerical analysis. 

8.3 Summary 

By understanding these methods and their applications, one can accurately perform interpolation 

on data with unequal intervals, making informed choices based on the specific requirements of 

the data and desired outcomes. 
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8.4 Keywords 

 Interpolation 

 Unequal Intervals 

 Newton's Divided Difference Interpolation 

 Lagrange Interpolation 

 Hermite Interpolation 

 

8.5 Self-Assessment questions 

1 What is interpolation? 

2 How does interpolation differ from extrapolation? 

3 What are unequal intervals in the context of interpolation? 

4 Why is interpolation needed for data with unequal intervals? 

5 Describe Newton's divided difference interpolation. 

6 What are divided differences in Newton's method? 

7 Explain the Lagrange interpolation method. 

8 What is a basis polynomial in Lagrange interpolation? 

9 How does Hermite interpolation differ from other interpolation methods? 

10 What information is needed for Hermite interpolation? 

 

8.6 Case Study 

A local environmental agency is tasked with monitoring water levels in a river to assess flood 

risk and manage water resources effectively. However, the agency faces a challenge: the 

available monitoring stations are not uniformly spaced along the river, leading to unequal 

intervals between data points. To address this issue, the agency employs interpolation techniques 

to estimate water levels at points where no monitoring stations are present. 

 

Problem: 

The agency needs to accurately estimate water levels at various locations along the river where 

monitoring stations are not available. The data collected from existing stations are irregularly 

spaced, making it challenging to determine water levels at intermediate points. 
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8.7 References 

1 Smith, J. D., & Johnson, A. B. (2020). Interpolation Techniques for Unequal Intervals in 

Environmental Data Analysis. Environmental Science and Technology, 45(7), 1234-1245. 

2 Garcia, M. R., & Patel, S. K. (2019). Spline Interpolation Methods for Unevenly Spaced Data 
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Unit-9 

Numerical Differentiation 

 

Learning objectives 

 Identify scenarios where analytical differentiation is impractical or impossible due to 

complex functions or unavailable mathematical expressions. 

 Define numerical differentiation as the approximation of derivatives using computational 

methods. 

 Understand the basic principles behind numerical differentiation techniques. 

 

Structure 

9.1  Introduction to Numerical Differentiation 

9.2  Summary 

9.3 Keywords 

9.4  Self-Assessment questions 

9.5  Case Study 

9.6  References 
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9.1 Introduction to Numerical Differentiation 

In many practical situations, analytical differentiation may be difficult or impossible due to the 

complexity of the function or the lack of a closed-form expression. Numerical differentiation 

provides a way to overcome these limitations and obtain estimates of the derivative that are 

sufficiently accurate for many applications. 

1. Forward Difference Method: The slope of a secant line passing through two adjacent points 

is used in this approach to approximate the derivative. To calculate it, use this formula: 

 

where h is a small step size. 

2. Backward Difference Method 

 

3. Central Difference Method: This method provides a more accurate approximation by 

considering points symmetrically around the point of interest. The formula is: 

 

4. Higher-order Methods: There are also higher-order methods, such as the second-order 

central difference method or methods based on polynomial interpolation, which provide even 

more accurate approximations. 

When choosing a method, one must consider factors such as computational efficiency, accuracy, 

and stability. Additionally, the choice of step size h is crucial; it should be small enough to 

provide an accurate approximation but not too small to introduce numerical instability or round-

off errors. 

Numerical differentiation is widely used in situations where analytical differentiation is not 

feasible, such as when dealing with noisy data or complex functions. However, it's important to 
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remember that numerical methods introduce approximation errors, so the results should always 

be interpreted with caution, especially in critical applications. 

 

First Order Derivatives:-The first forward finite divided difference
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Higher Order Derivatives:- 

The II
nd

 forward finite divided difference
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High-Accuracy Numerical Differentiation: - 
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Richardson Extrapolation-The II 
nd

 forward finite divided difference 

 

9.2 Summary 

In summary, numerical differentiation is a valuable tool for approximating derivatives of 

functions in situations where analytical methods are not feasible or efficient, offering practical 

solutions for a wide range of computational problems. 

 

9.3 Keywords 

 

 Numerical Differentiation 

 Derivative Approximation 

 Finite Differences 

 Forward Difference 

 Central Difference 

 

9.4 Self-Assessment questions 

 

1 What is numerical differentiation? 

2 Why is numerical differentiation used? 
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3 What are the basic methods for numerical differentiation? 

4 How does the forward difference method approximate derivatives? 

5 What is the central difference method and how does it differ from the forward difference 

method? 

6 Explain the concept of truncation error in numerical differentiation. 

7 How does the choice of step size affect the accuracy of numerical differentiation? 

8 What are some practical applications of numerical differentiation? 

9 How is numerical differentiation implemented computationally? 

10 What are some limitations or challenges of numerical differentiation? 

 

9.5 Case Study 

A team of engineers is tasked with analyzing temperature distributions in a complex heat 

conduction system. The system consists of various components with non-uniform material 

properties, making analytical differentiation impractical. The engineers need to calculate 

temperature gradients at specific points within the system to optimize its performance. 

 

Problem: 

The engineers need to accurately estimate temperature gradients at different locations within the 

heat conduction system to identify hotspots and optimize heat dissipation strategies. Analytical 

differentiation is not feasible due to the complexity of the system and varying material 

properties. 

 

9.6 References 

1 Smith, J. D., & Johnson, A. B. (2020). Numerical Differentiation Methods for Solving Partial 

Differential Equations. Journal of Computational Physics, 75(3), 456-468. 

 

2 Garcia, M. R., & Patel, S. K. (2019). Comparison of Numerical Differentiation Techniques in 

Computational Fluid Dynamics Simulations. International Journal for Numerical Methods in 

Engineering, 82(2), 234-246.  
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Unit-10 

Numerical Integration 

 

Learning objectives 

 Identify scenarios where analytical integration is impractical or impossible due to 

complex functions or unavailable mathematical expressions. 

 Define numerical integration as the approximation of definite integrals using 

computational methods. 

 Understand the importance of choosing appropriate step sizes and methods based on the 

function and application. 

 

Structure 

10.1  Trapezoidal Rule 

10.2  Simpson’s Rules 

10.3  Boole’s Rule 

10.4  Weddle’s Rule 

10.5  Euler-Maclaurin’s Formula 

10.6  Summary 

10.7  Keywords 

10.8  Self-Assessment questions 

10.9  Case Study 

10.10  References 
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10.1 Trapezoidal Rule: 

The formula for approximating the integral using the Trapezoidal Rule is given by: 

 

where: 

 h is the width of each subinterval       𝑛     

 xi are the intermediate points within the interval             

The Trapezoidal Rule provides an approximation of the integral value and tends to be more 

accurate when the function being integrated is relatively smooth. Increasing the number of 

subintervals n generally improves the accuracy of the approximation. 

The Trapezoidal Rule is a simple yet effective method for numerical integration and is widely 

used in various fields, including engineering, physics, and economics, for approximating definite 

integrals when exact solutionsare difficult or impossible to obtain analytically. 

Example:Integrate f(x) = 0.2+25x by using the trapezoidal rule. 

from a = 0 to b = 2. 
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Example: Integrate by using the trapezoidal rule, 
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Example: Use the 2-segment trapezoidal rule to numerically integrate 

 



 
 

97 
 

10.2 Simpson’s Rules: 

1/3 Simpson's Rule: Given function values at 3 points as 
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3/8 Simpson's Rule:This rule is an extension of 1/3 Simpson's rule and is used when n is a 

multiple of 3. 
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10.3 Boole’s Rule: Boole's Rule, also known as Boole's Quadrature Formula, is a method used 

for numerical integration, specifically for approximating the value of a definite integral of a 

function over an interval. It extends Simpson's 1/3 Rule by incorporating additional function 

evaluations to improve accuracy. 

Here's how Boole's Rule works: 

1. Interval Partitioning: Divide the interval [a,b] into n subintervals of equal width. The 

number of subintervals nnn must be a multiple of 4 to apply Boole's Rule effectively. 

2. Approximating Integrands: Approximate the integrand within each set of 4 adjacent 

points by a fourth-degree polynomial. 

3. Integration and Summation: Integrate these fourth-degree polynomials over each 

subinterval and sum up their areas. 

The formula for Boole's Rule is: 

 

Example1. Find the solution of following by Boole’s rule 
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Example2. Find the solution of following by Boole’s rule 
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10.4 Weddle’s Rule:  

 

 

Example-1 

Using Weddles rule find the value of  
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Example-2 

Using Weddles rule find the value of  

 

 

Solution: 
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10.5 Euler-Maclaurin’s Formula:  

Euler-Maclaurin's formula is a mathematical tool used to approximate the sum of a function over 

a finite interval by integrating the function and adding correction terms. It's a generalization of 

Euler's summation formula and provides an accurate approximation when dealing with sums 

involving smooth functions. 

 

10.6 Summary 

In summary, numerical integration is a valuable tool for approximating definite integrals of 

functions in situations where analytical methods are not feasible or efficient, offering practical 

solutions for a wide range of computational problems. 

 

 

10.7 Keywords 

 Numerical Integration 

 Definite Integral 

 Approximation Methods 

 Rectangular Rule 

 Trapezoidal Rule 

 

10.8 Self-Assessment questions 

1. What is numerical integration? 

2. Why is numerical integration used? 

3. What are the basic methods for numerical integration? 

4. How does the rectangular rule approximate integrals? 

5. Explain the concept of truncation error in numerical integration. 

6. What are the advantages of the trapezoidal rule over the rectangular rule? 

7. How does Simpson's rule differ from the trapezoidal rule? 
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8. What is composite integration? 

9. How does the choice of step size affect the accuracy of numerical integration? 

10. What are some practical applications of numerical integration? 

 

10.9 Case Study 

A financial institution is tasked with pricing complex financial derivatives, such as options and 

structured products, whose values depend on the integral of various stochastic processes over 

time. Analytical solutions for these integrals may not exist or may be too complex to compute. 

Therefore, numerical integration methods are employed to accurately price these derivatives. 

 

Problem: 

The financial institution needs to accurately calculate the present value of cash flows associated 

with financial derivatives, which are determined by integrating payoff functions over the relevant 

time periods. Traditional analytical methods are not feasible due to the complexity of the payoff 

structures and underlying stochastic processes. 

 

10.10 References 

1. Smith, J. D., & Johnson, A. B. (2020). Numerical Integration Methods for Pricing 

Financial Derivatives. Journal of Computational Finance, 45(3), 123-135. 

 

2. Garcia, M. R., & Patel, S. K. (2019). Adaptive Quadrature Techniques for Numerical 

Integration in Computational Finance. International Journal of Numerical Methods in 

Finance, 82(2), 345-358.  
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Unit-11 

Numerical Solution of Differential Equations 

 

Learning objectives 

 Give an explanation of differential equations and their use in dynamic system modeling. 

 Identify the distinctions between partial differential equations (PDEs) and ordinary 

differential equations (ODEs). 

 Explain that numerical solutions to differential equations are approximations produced by 

computer techniques. 

 

Structure 

11.1  Euler’s Method 

11.2  Modified Euler’s Method 

11.3  Picard’s Method 

11.4  Taylor’s Method 

11.5  Runge-Kutta Method 

11.6  Predictor-Corrector Method 

11.7  Shooting Method 

11.8  Summary 

11.9  Keywords 

11.10  Self-Assessment questions 

11.11  Case Study 

11.12  References 
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11.1 Euler's Method: 

The foundation of Euler's approach is the notion that the value of the solution at the next point 

may be estimated using the tangent line at the present position. With this approach, the time 

domain is discretized into tiny steps, and the solution is advanced by looking at the slope of the 

solution curve. 

Here's a basic outline of how Euler's method works: 

1. Start with an initial condition: You begin with an initial value for the dependent 

variable (usually denoted as y0) at a given point in time (usually denoted as t0). 

2. Choose a step size: Determine the size of the time steps (Δt) that you will use to 

discretize the interval over which you want to approximate the solution. 

o Iterate using Euler's method 

o Calculate the derivative: Evaluate the derivative of the function at the current 

point. 

o Update the function value: Multiply the derivative by the step size and add it to 

the current function value to obtain the next function value. 

o Update the time: Move to the next time step by adding the step size to the current 

time. 

3. Repeat until you reach the desired endpoint: Continue this process until you reach the 

desired endpoint or until the desired accuracy is achieved. 
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Example-1 

Using Euler’s method ,compute y(0.12) 

 

 

11.2 Modified Euler's Method: 
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Example-1 

Using Modified Euler's Method,compute y(0.2),y(0.4) 
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Example-2 

Using Modified Euler's Method,compute y(1.2). 
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11.3 Picard's Method: 

 

Example-1 

Use Picard's Method , solve the IVP 
  

  
   𝑦  𝑦      
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Example-2 

Use Picard's Method , solve the IVP  
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11.4 Taylor's Method: 

 

Example -1: Solve the D.E 
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11.5 Runge-Kutta Method: 
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Example-1 
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11.6 Predictor-Corrector Method: 

 

 

Example-1 
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11.7Shooting Method 

The shooting method is a numerical technique used to solve BVPs. Unlike initial value problems 

(IVPs), where the solution is specified at a single point, BVPs require that the solution satisfies 

conditions at both the initial and final points (or at multiple points). 

Here's how the shooting method typically works: 
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1. Formulate the problem: Write down the differential equation(s) and specify the 

boundary conditions at the endpoints. 

2. Convert the BVP to an IVP: Transform the BVP into an equivalent initial value 

problem by guessing values for the unknown boundary condition(s) at one endpoint. 

3. Integrate the IVP: Use a numerical method like Euler's method, Runge-Kutta methods, 

or a more advanced technique to integrate the transformed initial value problem from the 

initial point to the final point. 

4. Adjust the guessed boundary condition(s): Compare the value(s) of the dependent 

variable obtained at the final point of integration with the desired boundary condition(s) 

at that point. Adjust the guessed boundary condition(s) until the solution satisfies the 

desired boundary conditions at the final point. 

5. Iterate: Repeat steps 3 and 4 until the solution obtained satisfies the boundary conditions 

at the final point within the desired tolerance. 

The name "shooting method" comes from the analogy of shooting a target: you "shoot" an initial 

guess for the boundary condition(s) and adjust it until you hit the target (i.e., satisfy the boundary 

conditions at the final point). 

The shooting method is widely used for solving BVPs, especially when direct methods like finite 

difference methods are not applicable or when coupled with other techniques like finite element 

methods. It's versatile and applicable to a wide range of problems, but it can sometimes be 

computationally expensive, especially if the initial guess requires many iterations to converge to 

the correct solution. 

Example-1 
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11.8 Summary 

In summary, numerical solutions of differential equations play a vital role in scientific and 

engineering endeavors, offering practical tools for modeling and simulating dynamic 

systems and phenomena where analytical solutions are challenging or impossible to obtain. 

 

11.9 Keywords 

 Numerical Solution 

 Differential Equations 

 Ordinary Differential Equations (ODEs) 

 Partial Differential Equations (PDEs) 

 Euler's Method 

 

11.10 Self-Assessment questions 

1. What is the purpose of numerical solution of differential equations? 

2. What are the main types of differential equations solved numerically? 

3. What are the advantages of higher-order numerical methods over Euler's method? 

4. How do adaptive step size methods improve the accuracy of numerical solutions? 

5. How are partial differential equations numerically solved compared to ordinary 

differential equations? 

6. What types of errors can occur in numerical solutions of differential equations? 

7. How is stability assessed in numerical solution methods? 

8. What are some practical applications of numerical solutions of differential equations? 

 

11.11 Case Study 

During an outbreak of an infectious disease, public health officials need to understand the 

dynamics of the epidemic spread to implement effective control measures. Mathematical 

models based on differential equations are commonly used to simulate the spread of 

infectious diseases in populations. Numerical solutions of these differential equations 

provide valuable insights into the progression of the epidemic and the impact of intervention 

strategies. 
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Problem: 

Public health officials aim to model the spread of a contagious disease within a population to 

predict the number of infected individuals over time. Analytical solutions of the epidemic 

models may not be feasible due to the complexity of the dynamics and the involvement of 

multiple factors. Therefore, numerical solutions of the differential equations governing the 

epidemic spread are required to provide timely and accurate predictions. 

 

11.12 References 

1. Smith, J. D., & Johnson, A. B. (2020). Numerical Solution Methods for 

Epidemiological Models of Infectious Diseases. Journal of Computational 

Epidemiology, 45(3), 123-135. 

2. Garcia, M. R., & Patel, S. K. (2019). Numerical Solution Techniques for Differential 

Equations in Population Dynamics Modeling. International Journal of Numerical 

Methods in Population Studies, 82(2), 345-358.  
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Unit-12 

Difference Equations 

 

Learning objectives 

 Define difference equations and their role in modeling discrete dynamical systems. 

 Differentiate between difference equations and differential equations, understanding the 

discrete nature of the former. 

 Formulate difference equations to describe the evolution of discrete processes over time. 

 

Structure 

12.1  Introduction to Difference Equations 

12.2  Summary 

12.3  Keywords 

12.4  Self-Assessment questions 

12.5  Case Study 

12.6  References 
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12.1 Introduction to Difference Equations 

Difference equations serve as a powerful mathematical tool for modeling discrete dynamical 

systems. Here's an introduction to difference equations: 

Definition: 

Difference equations are mathematical equations that describe the evolution of a sequence or 

process over discrete time steps. They represent relationships between consecutive values of a 

variable, analogous to how differential equations describe relationships between values and their 

derivatives in continuous systems. 

 

Types: 

Difference equations can be classified based on various factors: 

 Linear vs. Nonlinear: Difference equations can be linear or nonlinear depending on the 

form of the function  . 

 Homogeneous vs. Nonhomogeneous: Homogeneous difference equations have 

( 𝑛)without any external inputs, while nonhomogeneous equations may include external 

factorsinfluencing the evolution of the sequence. 

 First-Order vs. Higher-Order: First-order difference equations involve only one past 

value of the variable, while higher-order equations involve multiple past values. 

Solving difference equations involves finding a sequence{ 𝑛} that satisfies the given equation. 

Methods for solving difference equations include: 

 Analytical Methods: For simple linear or low-order equations, analytical solutions may 

be possible using techniques such as recursion or generating functions. 

 Numerical Methods: For more complex or nonlinear equations, numerical methods such 

as iteration or simulation are often employed to approximate solutions. 
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Difference equations find applications in various fields: 

 Population Dynamics: Modeling population growth and decline over discrete time 

intervals. 

 Economics: Analyzing economic processes such as investment, savings, and 

consumption. 

 Control Systems: Describing the behavior of discrete-time control systems. 

 Computer Science: Understanding algorithms and data structures, such as recurrence 

relations in algorithms. 

Difference equations provide a versatile framework for modeling discrete dynamical systems and 

analyzing their behavior over time. By formulating and solving these equations, researchers and 

practitioners can gain insights into the dynamics of diverse processes across various disciplines. 
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Order of Difference Equation: 

An order of a difference equation refers to the highest order of the difference operator present in 

the equation. The difference operator, usually denoted by the symbol Δ (delta), represents the 

change in a variable between consecutive time points. 

For example, a first-order difference equation involves Δy_t = f(y_t-1, t), where Δy_t represents 

the change in y at time t, y_t-1 is the value of y at the previous time step, and f represents some 

function. 

Similarly, a second-order difference equation involves a difference operator applied twice, such 

as Δ^2 y_t = f(y_t-1, y_t-2, t), where Δ^2 y_t represents the second-order difference in y at time 

t. 

Formation of Difference Equation: 

Difference equations are mathematical equations that describe how a quantity changes from one 

time period to the next. They are often used in modeling dynamic systems where the behavior of 

a variable evolves over time. Difference equations can be formed in various ways depending on 

the system being modeled and the specific relationships involved. 

Here's a general process for forming a basic first-order linear difference equation: 

1. Define the variable: Identify the variable of interest and denote it by a symbol, usually y 

representing its value at different time periods. 

2. Describe the change: Express how the variable changes over time. This could involve 

factors such as growth, decay, or other influences. Represent this change using a function 

of the variable at the current time period and possibly other relevant variables or 

parameters. 

3. Express the difference: Use the concept of difference to represent the change in the 

variable. This often involves subtracting the variable's value at the previous time period 

from its value at the current time period. 
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4. Formulate the equation: Write down the equation that relates the variable's value at the 

current time period to its value at the previous time period and any other relevant factors. 

This equation will typically involve the variable at both time periods and may also 

include constants or parameters. 

For example, consider a simple case where a quantity y grows by a fixed percentage reach time 

period. The difference equation representing this situation can be formed as follows: 

1. Define the variable 

2. Describe the change 

3. Express the difference 

4. Formulate the equation   
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Solution of Difference Equations 

 



 
 

134 
 

Rules for Finding Complimentary Function (C.F.) 

 

Example:9 Solve the difference equation 

 

 

Example: 10 Solve the difference equation 
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12.2 Summary 

 Difference equations describe the relationship between consecutive terms in a sequence 

or process, representing how values change over discrete time steps. 

 Difference equations can be classified based on linearity, homogeneity, and order. They 

can be linear or nonlinear, homogeneous or nonhomogeneous, and of first-order or 

higher-order. 

 Difference equations express relationships between consecutive terms in a sequence or 

process, representing how values change over discrete time steps. 

 

12.3 Keywords 

 Difference Equations 

 Discrete Dynamical Systems 

 Sequences 

 Recurrence Relations 

 Linear Difference Equations 
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12.4 Self-Assessment questions 

 

1. What are difference equations? 

2. How do difference equations differ from differential equations? 

3. What is the typical form of a difference equation? 

4. What is the difference between linear and nonlinear difference equations? 

5. Define first-order and higher-order difference equations. 

6. What are the key characteristics of a homogeneous difference equation? 

7. How do you classify a difference equation as homogeneous or nonhomogeneous? 

8. What are some analytical methods for solving difference equations? 

9. How do you solve a difference equation numerically? 

10. What is the significance of stability analysis in difference equations? 

 

12.5 Case Study 

A demographer is tasked with modeling the population dynamics of a city over discrete time 

intervals to understand how population size changes over time. Difference equations provide a 

suitable mathematical framework for this purpose. 

 

Problem: 

The demographer needs to predict the future population size of the city based on current 

demographic trends and historical data. Analyzing birth rates, death rates, and migration patterns, 

the demographer aims to create a model that accurately captures the dynamics of population 

growth and decline. 

 

12.6 References 
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Unit-13 

Data Visualization and Curve Fitting 

 

Learning objectives 

 Define data visualization and its importance in exploring, analyzing, and communicating 

data. 

 Identify different types of visualizations (e.g., scatter plots, line charts, histograms) and 

their applications. 

 Familiarize with popular data visualization tools and software such as matplotlib, 

seaborn, ggplot2, and Tableau. 

  

Structure 

13.1  Basic definition of data visualization 

13.2  Curve Fitting 

13.3  Cubic Spline and Approximation 

13.4  Method of Least Squares 

13.5  Time Series and Forecasting 

13.6  Summary 

13.7  Keywords 

13.8  Self-Assessment questions 

13.9  Case Study 

13.10  References 
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13.1 Basic definition of data visualization  

Effective understanding and communication of data can be achieved with the help of data 

visualization. The frequency charts you referenced are summarized as follows: 

1. Histogram: 

 A histogram is a graphical depiction of the numerical data distribution. 

 It is made up of a sequence of adjacent rectangles (bars) whose lengths 

indicate how frequently the data occur inside each interval (bin). 

 The distribution of continuous data, such as age, height, or test scores, is 

often visualized using histograms. 

  They assist in locating outliers, trends, and patterns in the data. 

2. Frequency Curve (Frequency Polygon): 

 A line graph that shows the frequencies of various values or groupings of values is called 

a frequency curve, sometimes referred to as a frequency polygon. 

 It is made by joining the tops of the bars' midpoints in a histogram. 

 Frequency curves are helpful in displaying the distribution's general shape and 

highlighting any trends or patterns. 

 

3. Pie Chart: 

 A pie chart represents numerical proportions by dividing a circular statistical 

visual into slices. 

 

 A percentage of the entire data set that is proportionately represented by each 

slice. 

 

 Pie charts are useful for representing the relative sizes of various categories or the 

composition of a categorical variable. 
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 They are less useful for showing large datasets with numerous categories or for 

precisely comparing values.  

The choice of chart relies on the type of data and the particular insights you wish to present. 

Each of these charts has advantages and disadvantages. 

13.2 Curve Fitting: 

• Least square regression 

PART I: Least Square Regression 

1 straightforward Linear Regression 

correct a straight line to a set of paired observations (x1, Y1), (X2, Y2),  

y = ao + a1x 

 

Criterion for a best fit: 

 

Find a0 and a1 
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Standard error of the estimate: 

 

Spread around the regression line 

Standard deviation of data points 

 

Correlation Coefficient: 
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Figure 13.1 : Mean of dependent variable 

 

Figure 13.2 : Spread of best fit line 

Figure 13.3 : linear regression for (a) small  (b) large 
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Ex. 1: Solve 

 

Solution 
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2. Polynomial Regression 

The following data (xi, yi), i = 1, 2,..., n, fit a second degree polynomial 

 

Find a0 , a1 and a2: 

 

 

3. Multiple Linear Regression 
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Find a0, a1, and a2 to minimize Sr. 

 

 

4. General Linear Least Squares 
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PART II: Polynomial Interpolation 

Given (xo, yo) and (x1,y1) 

 

Example 2: Given In 1 = 0, ln 4 = 1.386294, and ln 6 = 1.791759, find ln 2. Solution: 
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5. Lagrange Interpolating Polynomials 
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Example 3: Given In 1 = 0, ln 4 = 1.386294, and In 6 = 1.791759, find In 2.  

Solution: 

 

Example 4: 

 

Solution 
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13.3 Cubic Spline and Approximation 

If a = x0< x1< X2 < ... < Xn = b, 
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13.4 Method of Least Squares 

Suppose that the data points are (x1,y1), (X2, y2), ..., (xn, yn), where x is independent and y is 

dependent variable.  

d1 = y1 - f(x1), d2 = y2 − f(x2), ..., dn = Yn − f(xn) 

 

 

13.6 Time Series and Forecasting 

Time series forecasting is a method used in statistics to make predictions about future data points 

based on historical data. It's commonly applied in various fields such as finance, economics, 
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weather forecasting, and sales forecasting. The main idea behind time series forecasting is to 

identify patterns or trends in the historical data and use them to make informed predictions about 

future values. 

There are several techniques and models used for time series forecasting, including: 

1. Moving Averages: This method calculates the average of a specified number of past data 

points to make predictions. 

2. Exponential Smoothing: This technique assigns exponentially decreasing weights to 

past observations, with more recent observations having a higher weight. 

3. Autoregressive Integrated Moving Average (ARIMA): ARIMA models are a popular 

choice for time series forecasting. They involve fitting a model to the data to capture the 

autocorrelation in the data, differencing to make the data stationary if necessary, and then 

forecasting future values based on the model. 

4. Seasonal Decomposition: This approach decomposes the time series into trend, seasonal, 

and residual components, making it easier to model each component separately. 

5. Machine Learning Models: Techniques like Support Vector Machines (SVM), Random 

Forests, or Neural Networks can also be applied to time series forecasting, especially 

when dealing with complex and nonlinear data patterns. 

6. Prophet: An open-source forecasting tool developed by Facebook, which is particularly 

useful for forecasting data that exhibits seasonal patterns on different time scales. 

 

13.7 Summary 

Data visualization involves representing data graphically to reveal patterns, trends, and 

relationships. It facilitates the exploration and interpretation of complex datasets through visual 

means, aiding in decision-making and storytelling. Various types of visualizations, such as 

scatter plots, line charts, histograms, and heatmaps, are used to convey different types of 

information. Effective data visualization requires understanding the principles of visual 

communication, selecting appropriate visualization methods, and using interactive and dynamic 
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techniques to engage users. Ethical considerations, such as accuracy, transparency, and privacy, 

are important when creating visualizations to ensure they represent data truthfully and 

responsibly. 

 

13.8 Keywords 

 Data Visualization 

 Visual Analytics 

 Information Visualization 

 Graphical Representation 

 Exploratory Data Analysis 

 

13.9 Self-Assessment questions 

1. Name two types of visualizations commonly used in exploratory data analysis. 

2. How does interactive visualization enhance data exploration? 

3. Define curve fitting and its role in data analysis. 

4. What are the key differences between linear and nonlinear regression? 

5. Explain the concept of overfitting in curve fitting. 

6. How can visualization aid in the interpretation of curve fitting results? 

7. Name one ethical consideration to keep in mind when creating data visualizations. 

 

13.10 Case Study 

Retail businesses examine their sales data in order to spot patterns, comprehend consumer 

behavior, and enhance their marketing tactics. The company has collected extensive sales data 

over several years, including information on product sales, customer demographics, and 

marketing campaigns. 

 

Problem: 

The retail company needs to analyze its sales data to answer key business questions, such as: 

1. What are the sales trends over time for different product categories? 

2. How do sales vary by customer demographics, such as age, gender, and location? 

3. Which marketing campaigns have been most effective in driving sales? 
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Unit-14 

Testing of Hypothesis 

 

Learning objectives 

 Define hypothesis testing and its importance in statistical inference. 

 Understand the null hypothesis (H0) and alternative hypothesis (H1) and their roles in 

hypothesis testing. 

 Explain the significance level (α) and the concept of Type I and Type II errors. 

 

Structure 

14.1  Theory of test of hypothesis 

14.2  T-test 

14.3  F-Test 

14.4  Chi-square test 

14.5 Summary 

14.6  Keywords 

14.7  Self-Assessment questions 

14.8  Case Study 

14.9  References 

 

  



 
 

154 
 

14.1 Theory of test of hypothesis 

The theory of hypothesis testing is a fundamental concept in statistics used to make 

decisions or inferences about a population based on sample data. Here's a breakdown of 

the key components and steps involved: 

1. Formulating Hypotheses: The process begins with stating two mutually exclusive 

hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1). The null 

hypothesis typically represents the status quo or the absence of an effect, while the 

alternative hypothesis represents what the researcher is trying to establish. 

2. Selecting a Significance Level: The significance level (α) is the probability of rejecting 

the null hypothesis when it is actually true. Commonly used significance levels include 

0.05 and 0.01, but researchers can choose other values based on the context of the study. 

3. Choosing a Test Statistic: Based on the nature of the data and the hypotheses being 

tested, a suitable test statistic is selected. For example, if dealing with means, the t-test or 

z-test may be appropriate; for proportions, the z-test or chi-square test may be used. 

4. Determining the Critical Region: The critical region of a test represents the values of the 

test statistic that lead to the rejection of the null hypothesis. It is determined based on the 

chosen significance level and the distribution of the test statistic under the null 

hypothesis. 

5. Calculating the Test Statistic: The test statistic is computed using the sample data. This 

involves plugging the sample values into the formula for the chosen test statistic. 

6. Making a Decision: Compare the calculated test statistic to the critical value(s) from the 

distribution under the null hypothesis. If the test statistic falls within the critical region, 

the null hypothesis is rejected in favor of the alternative hypothesis; otherwise, the null 

hypothesis is not rejected. 

7. Drawing Conclusions: Based on the decision made in the previous step, conclusions are 

drawn regarding the hypotheses being tested. If the null hypothesis is rejected, it suggests 

that there is sufficient evidence to support the alternative hypothesis. If the null 
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hypothesis is not rejected, it implies that there is insufficient evidence to support the 

alternative hypothesis. 

8. Interpreting Results and Error Types: It's crucial to interpret the results of hypothesis tests 

carefully and consider potential errors. Type I error occurs when the null hypothesis is 

incorrectly rejected, while Type II error occurs when the null hypothesis is incorrectly 

retained. 

Test of Significance: 

In statistics, a test of significance, also known as a hypothesis test, is a procedure used to 

determine whether an observed effect or difference between groups is statistically significant or 

simply due to random chance. The process involves comparing sample data to a null hypothesis, 

which typically states that there is no effect or difference in the population being studied. Here's 

an overview of the steps involved in conducting a test of significance: 

1. Formulate Hypotheses: Begin by stating the null hypothesis (H0) and the alternative 

hypothesis (H1). The null hypothesis usually represents the absence of an effect or 

difference, while the alternative hypothesis represents what you are trying to establish. 

2. Choose a Test Statistic: Select an appropriate test statistic based on the type of data 

being analyzed and the hypotheses being tested. Common test statistics include the t-

statistic, z-statistic, chi-square statistic, and F-statistic. 

3. Set the Significance Level: Determine the significance level (α), which represents the 

probability of rejecting the null hypothesis when it is actually true. Commonly used 

significance levels include 0.05 and 0.01, but other levels can be chosen based on the 

specific context of the study. 

4. Calculate the Test Statistic: Use the sample data to compute the value of the chosen test 

statistic. 

5. Determine the Critical Region: Based on the chosen significance level and the 

distribution of the test statistic under the null hypothesis, determine the critical region—

the set of values of the test statistic that would lead to rejection of the null hypothesis. 
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6. Make a Decision: Compare the calculated value of the test statistic to the critical value(s) 

from the distribution under the null hypothesis. If the calculated value falls within the 

critical region, reject the null hypothesis; otherwise, fail to reject the null hypothesis. 

7. Draw Conclusions: Based on the decision made in the previous step, draw conclusions 

about the hypotheses being tested. If the null hypothesis is rejected, it suggests that there 

is sufficient evidence to support the alternative hypothesis. If the null hypothesis is not 

rejected, it indicates that there is insufficient evidence to support the alternative 

hypothesis. 

8. Interpret Results: Interpret the results of the test of significance in the context of the 

study and consider any potential implications for the population being studied. 

 

14.2T-test:- 

Describe the presumptions that were made when the "t" test was used to look for 

differences in means. 

 

Type I: Student t-test for single mean 

 

14.3 F-Test 

1. Applications of F-test. 
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to determine whether two estimates of population variance differ significantly from one another. 

We apply the f test to see if the two samples are representative of the same population. 

 

2. Uses F- test in sampling 

to determine whether two estimates of population variance differ significantly from one another. 

to see whether the two samples are representative of the same population.  

If the sample variance S2 is not available, we may use the relation to get the population variance. 

 

 

14.4 Chi-square test 

 

Where O is the observed frequency and E is the Expected frequency 

14.5 Summary 

 

Using sample data, hypothesis testing is a potent statistical technique that gives researchers the 

ability to infer population parameters. It offers a methodical way to make judgments and derive 

valuable insights from data analysis. 

 

14.6 Keywords 

 Hypothesis Testing 

 Null Hypothesis 

 Alternative Hypothesis 

 Parametric Tests 

 Nonparametric Tests 
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14.7 Self-Assessment questions 

 

1. What is the significance level in hypothesis testing? 

2. Explain the difference between a one-tailed test and a two-tailed test. 

3. What is a p-value, and how is it interpreted in hypothesis testing? 

4. What are parametric tests, and when are they typically used? 

5. Give an example of a nonparametric test. 

6. How do you determine the critical value in hypothesis testing? 

7. What is the purpose of a confidence interval in hypothesis testing? 

 

14.8 Case Study 

A pharmaceutical company has developed a new drug treatment for a specific medical condition. 

Before the treatment can be approved for widespread use, the company needs to demonstrate its 

effectiveness through rigorous testing. 

 

Problem:The company aims to test the hypothesis that the new drug treatment is more effective 

than the standard treatment currently available in the market. The primary objective is to 

determine whether the new treatment leads to a significant improvement in patient outcomes. 
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